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Abstract. The supersymmetry of the electron in both the nonstationary magnetic and electric
fields in a two-dimensional case is studied. The supercharges which are the integrals of motion
and their algebra are established. Using the obtained algebra the solutions of nonstationary Pauli
equation are generated.

1. Introduction

Supersymmetric quantum mechanics introduced in [1, 2] currently receives much attention
(see also surveys [3–5]). One of the quantum-mechanical problems where supersymmetry
(SUSY) is the physical symmetry is the motion of the electron in a stationary two-
dimensional magnetic fields and in some three-dimensional fields [6–10] (see also [3–5]
and references therein).

The problem of introducing SUSY in the case of the electron motion in the nonstationary
magnetic field was investigated for the first time in [11]. The case of a time-varying
uniform magnetic field with the fixed direction was examined and it was shown that the
group-theoretical analysis can provide a clue to the supersymmetric factorization of the time-
dependent Pauli equation and to obtaining eigensolutions. Note also that recently the SUSY
of a one-dimensional time-dependent Schrödinger equation was established and with the
help of the time-dependent Darboux transformation, new exactly solvable time-dependent
potentials were generated [12].

The aim of this paper is to establish the SUSY of the electron in both the nonstationary
magnetic and electric fields. The supercharges are obtained as integrals of motion. They
are the straightforward generalization of the well known supercharges in the stationary case.

2. SUSY of the Pauli equation in a two-dimensional case

In this paper we consider the electron motion in nonstationary ‘two-dimensional’
electromagnetic field. The equation of motion in this case is the nonstationary Pauli equation

i
∂ψ

∂t
= Hpψ (1)
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where

Hp = 1
2(π

2
x + π2

y + p2
z − eBσz)

πα = pα − eAα pα = −i
∂

∂xα

Ax = Ax(x, y, t) Ay = Ay(x, y, t) Az = 0

(2)

are the components of the vector potential,

B = Bz(z, y, t) = ∂Ay

∂x
− ∂Ax

∂y

is the magnetic field parallel to thez-axis.
It is obvious thatpz is the integral of motion. Therefore, the solution of equation (1)

can be written in the following form

ψ(x, y, z, t) = e−ik2t/2+ikzψ(x, y, t)

where k is the value of momentum alongz-axis. Thenψ(x, y, t) satisfies the Pauli
equation (1) with a two-dimensional Hamiltonian

H = 1
2(π

2
x + π2

y − eBσz). (3)

Further, we shall only deal with the two-dimensional case.
Let us first take a look at the SUSY formulation of the two-dimensional Pauli equation

in the case of the stationary magnetic field [6–9]. Then the solution of the nonstationary
equation can be written in the form ofψ(x, y, t) = e−iEtψ(x, y) and forψ(x, y) we obtain
the stationary Pauli equation

Hψ(x, y) = Eψ(x, y). (4)

The two-dimensional Pauli Hamiltonian can be written as follows

H =
(
H+ 0
0 H−

)
= 1

2

(
π−π+ 0

0 π+π−

)
(5)

or in supersymmetrical form

H = {Q+,Q−}. (6)

The superchargesQ+, Q− read

Q+ = π−σ+√
2

Q− = π+σ−√
2

(7)

where

π± = πx ± iπy

σ± = σx ± iσy
2

.

It is convenient to introduce the complex variablez = x + iy. Then

π+ = −2i
∂

∂z∗
− eA(z, z∗)

π− = −2i
∂

∂z
− eA∗(z, z∗)

A(z, z∗) = Ax + iAy.

(8)
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The introduced supercharges (7) also satisfy the following relations

(Q±)2 = 0

[Q±, H ] = 0.
(9)

These relations together with (6) define the SUSY algebra, which explains the two-
fold degeneracy of the nonzero energy levels of the electron in the two-dimensional
inhomogeneous magnetic fieldB(x, y).

Note that the superchargesQ± commute with the Hamiltonian and in the case of the
stationary magnetic field they are the integrals of motion. In the case of the nonstationary
magnetic field, all relations (5)–(9) are also true butQ± are not the integrals of motion.
In the next section we shall establish the superchargesQ̃± which are the integrals of the
electron motion in the nonstationary electromagnetic field.

3. Supercharges in a nonstationary case

The supercharges which are the integrals of motion must satisfy the equation

i
∂Q̃±
∂t
+ [Q̃±, H ] = 0. (10)

This equation was used in [13] for the calculation of the supercharges in the case of
the nonstationary magnetic field and some results of paper [11] concerning SUSY were
reproduced in more simple way. In this paper we consider the case of the nonstationary
axially symmetric electromagnetic field with the vector potential

Ax = − 1
2B(t)y + 1

2D(t)x

Ay = 1
2B(t)x + 1

2D(t)y.
(11)

Then the magnetic field is

Bx = By = 0 Bz = B(t). (12)

The components of the electric field consist of two parts

Ex = 1

2

∂B(t)

∂t
y − 1

2

∂D(t)

∂t
x

Ey = −1

2

∂B(t)

∂t
x − 1

2

∂D(t)

∂t
y

(13)

where the first term is the solenoidal field connected with the time-varying of the magnetic
field, the second term is a potential electric field of the nonstationary harmonic oscillator.
Thus, the system considered is an isotropic two-dimensional nonstationary harmonic
oscillator in the time-varying uniform magnetic field. Note that the caseD(t) = 0
corresponds to the one considered in [11, 13].

In complex variables

A(z, z∗, t) = 1
2a(t)z (14)

where

a(t) = D(t)+ iB(t) (15)

and then

π− = −2i
∂

∂z
− ea

∗(t)
2

z∗

π+ = −2i
∂

∂z∗
− ea(t)

2
z.

(16)
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The solution of equation (10)̃Q± can be written in a form similar to (7)

Q̃+ = π̃−σ+√
2

Q̃− = π̃+σ−√
2

(17)

where

π̃− = −f1(t)2i
∂

∂z
− f2(t)

ea∗

2
z∗

π̃+ = −f ∗1 (t)2i
∂

∂z∗
− f ∗2 (t)

ea

2
z

(18)

f1(t) andf2(t) are the unknown functions that will be calculated further. For this purpose
the following commutation relations are useful

[π−, π+] = ie(a − a∗) = −2eB

[π̃−, π̃+] = ie(f1f
∗
2 a + f ∗1 f2a

∗)
[π̃−, π+] = ie(f1a + f2a

∗)
[π−, π̃+] = −ie(f ∗1 a

∗ + f ∗2 a)
[π−, π̃−] = [π+, π̃+] = 0.

(19)

SubstitutingQ̃+ from (17) into (10) we obtain the equation forπ̃−

i
∂π̃−
∂t
+ π̃−H− −H+π̃− = 0. (20)

Before considering the equation forf1 andf2 note thatπ̃− is in a simple way related
with the integral of motion. Indeed, using the fact that

H+ −H− = [π−, π+] = −2eB(t)

equation (20) can be written in the following form

i
∂π̃−
∂t
+ [π̃−, H−] + 2eB(t)π̃− = 0. (21)

Let

π̃− = ei2�(t)I (22)

where�(t) = e ∫ t0 B(t) dt . ThenI satisfies the equation

i
∂I

∂t
+ [I,H−] = 0. (23)

Thus, I is the integral of motion of the HamiltonianH−. It is obvious thatI is also the
integral of motion ofH+ and thus the integral of motion of the total HamiltonianH . It is
also worth noting that

π̃+ = e−i2�(t)I+ (24)

where I+ is the integral of motion conjugated toI . The question about the integrals of
motion of the nonstationary quantum-mechanical problems was studied in [14].
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Now, let us consider the equations forf1 andf2. Using the commutation relations (19)
and substituting the explicit expression forπ̃− (18) into (20) or (21) we obtain a set of
equations forf1(t) andf2(t)

∂f1

∂t
+ ea∗(t)(f1− f2) = 0

∂(f2a
∗(t))
∂t

+ ea∗(t)a(t)(f1− f2) = 0.
(25)

The solution of this set of equations can be written as follows

f1 = f ei�(t)

ef2a
∗ = (eD(t)f + ∂f

∂t
)ei�(t)

(26)

wheref satisfies the second-order differential equation

∂2f

∂t2
= −

(
(eB(t))2+ e ∂D(t)

∂t

)
f. (27)

Thus, in our case the problem of constructing the superchargesQ̃± leads to equation
(27). Solving this equation and using (26) we obtainf1, f2 and thus supercharges (17)Q̃±,
where

π̃− = ei�(t)

(
−f 2i

∂

∂z
−
(
∂f

∂t
+ eD(t)f

)
1

2
z∗
)

π̃+ = e−i�(t)

(
−f ∗2i

∂

∂z∗
−
(
∂f ∗

∂t
+ eD(t)f ∗

)
1

2
z

)
.

(28)

To conclude this section let us consider the stationary magnetic and electric fields

B(t) = B = constant

D(t) = Dt D = constant.

Equation (27) in this case can be easily solved

f = c1e−iωt + c2eiωt (29)

whereω =
√
(eB)2+ eD, c1, c2 are arbitrary constants.

We have two linearly independent solutions. Choosingc1 = 1, c2 = 0 gives the
following supercharges

Q̃+ = 1√
2

ei(ω0−ω)t
(
−2i

∂

∂z
− (eDt − iω)

1

2
z∗
)
σ+

Q̃− = 1√
2

e−i(ω0−ω)t
(
−2i

∂

∂z∗
− (eDt + iω)

1

2
z

)
σ−

(30)

whereω0 = eB. The second linearly independent solutionc1 = 0, c2 = 1 gives

Q̃+ = 1√
2

ei(ω0+ω)t
(
−2i

∂

∂z
− (eDt + iω)

1

2
z∗
)
σ+

Q̃− = 1√
2

e−i(ω0+ω)t
(
−2i

∂

∂z∗
− (eDt − iω)

1

2
z

)
σ−.

(31)

Note that even in the constant electromagnetic field supercharges (30) and (31) depend
on the timet . When the electric field is equal to zeroD = 0 the supercharges (30) result in
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the well known time-independent supercharges (7). Supercharges (31) in the case ofD = 0
give new supercharges which are connected with (7) in the following way

Q̃+ = ei2ω0tQ+(−B)
Q̃− = e−i2ω0tQ−(−B)

(32)

whereQ±(−B) are supercharges (7) with the opposite directed magnetic field.

4. The algebra of SUSY

The supercharges̃Q± are the integrals of motion ofH and they fulfil the superalgebra

{Q̃+, Q̃−} = H̃ (Q̃±)2 = 0 (33)

where

H̃ = 1

2

(
π̃−π̃+ 0

0 π̃+π̃−

)
is also the integral of motion.̃H can be treated as a new Hamiltonian and is a time-dependent
extension of the usual HamiltonianH .

One more integral of motion results from the axial symmetry. It is az-component of
the angular momentum

Lz = z ∂
∂z
− z∗ ∂

∂z∗
(34)

which satisfies the commutation relation

[π̃±, Lz] = ∓π̃±. (35)

It is obvious thatSz = σz/2 is also an integral of motion. The algebra of SUSY can be
extended byLz andSz which satisfy the following relations

[Q̃±, Lz] = ±Q̃± [Q̃±, Sz] = ∓Q̃±
[Lz, H̃ ] = [Sz, H̃ ] = [Sz, Lz] = 0.

(36)

The total momentJ = Lz + Sz commutes with all the generators of the algebra.
Note, that using (19) and (26) we obtain

[π̃−, π̃+] = i

(
f
∂f ∗

∂t
− f ∗ ∂f

∂t

)
(37)

wheref andf ∗ are two linear-independent solutions of equation (27). The Wronskian of
equation (27) is constant. We choose to scale the solutions so that the Wronskian is

f
∂f ∗

∂t
− f ∗ ∂f

∂t
= −2i (38)

then

[π̃−, π̃+] = 2.

Let us introduce the operators of creation and annihilation

b̃± = π̃±√
2

(39)
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satisfying the commutation relation [b̃−, b̃+] = 1. It is convenient to introduce the operators
of creation and annihilationb± which are the integrals of motion. Using (22) and (24) we
have

b± = e±i2�(t)b̃±. (40)

It is obvious that

[b−, b+] = 1 (41)

and using (35)

[b±, Lz] = ∓b±. (42)

The new HamiltonianH̃ can be written as follows

H̃ = b̃+b̃− + σ+σ− = b̃+b̃− + sz + 1
2 = b+b− + sz + 1

2. (43)

In the new notations the supercharges are

Q̃+ = b̃−σ+ = ei2�(t)b−σ+ Q̃− = b̃+σ− = e−i2�(t)b+σ−. (44)

Let us emphasize that the dependence of the supercharges on the time is not only in phase
factor sinceb± are also the functions of time (see (40), (39) and (28)).

5. Eigensolutions ofH̃ and a representation of the algebra

Let us choose the orthogonal basis|n,m, s〉, wheren = 0, 1, 2, . . . are the eigenvalues of
b+b−, m is the eigenvalue ofLz, s = ± 1

2 is the eigenvalue ofSz.
The action of the operators on the basis is the following

H̃ |n,m, s〉 = (n+ s + 1
2)|n,m, s〉

Lz|n,m, s〉 = m|n,m, s〉
Sz|n,m, s〉 = s|n,m, s〉
b−|n,m, s〉 =

√
n|n− 1, m− 1, s〉

b+|n,m, s〉 =
√
n+ 1|n+ 1, m+ 1, s〉

Q̃+|n,m, s〉 = δ−1/2,se
i2�(t)√n|n− 1, m− 1, 1

2〉
Q̃−|n,m, s〉 = δ1/2,se

−i2�(t)
√
n+ 1|n+ 1, m+ 1,− 1

2〉.

(45)

Note that, in contrast to the stationary case, the basic functions in these relations are time-
dependent functions. The considered basis can be obtained by applying the operator of
creationb+ to the ground state

|n,m, s〉 = 1√
n!
(b+)n|0, m− n, s〉. (46)

The ground state is defined by the equation

b−|0, m, s〉 = 0. (47)

The solution of this equation taking into account spin variables is the following

|0, m, s〉 = Cs(t)χs(z∗)−m exp

[
i

4

(
eD(t)+ 1

f (t)

∂f (t)

∂t

)
|z|2

]
(48)

where

χ1/2 =
(

1
0

)
χ−1/2 =

(
0
1

)
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are the eigenstates of the spin operatorSz, from the condition that the wavefunction does
not have a pole at zerom 6 0, Cs(t) is a certain function of time. We may choose this
function in the way that eigenstates ofH̃ satisfy the nonstationary Pauli equation. It is easy
to check that the wavefunction (48) with

Cs(t) = C(f (t))m−1ei(m+2s)�(t) (49)

indeed satisfies the nonstationary Pauli equation. HereC is a constant of normalization of
wavefunction (48).

It is known that applying an integral of motion to the solution of wave equation yields
a function that itself is the solution of the same wave equation (see for example [11, 14]).
Thus, becauseb+ is the integral of motion, the wavefunction|n,m, s〉 calculated by (46)
is also a solution of the nonstationary Pauli equation. For more details on constructing the
exact solution of the nonstationary Schrödinger equation with the help of the dynamical
symmetry see [14]. Note also that̃H has equidistant two-fold degenerated eigenvalues
connected with SUSY, except for the unique ground state.

6. Conclusion

Originally, the SUSY of the Pauli equation was established in the case of the stationary
magnetic field without the electric one. The supercharges in this case do not depend on
time. In [11] it was shown that SUSY can also be introduced in the case of the nonstationary
magnetic field.

In this paper the SUSY of the Pauli equation is introduced in the case of both the non-
stationary magnetic and electric fields. Namely, the system considered is an isotropic two-
dimensional nonstationary harmonic charged oscillator in the time-varying uniform magnetic
field. The supercharges are obtained as integrals of motion of the Hamiltonian. It is worth
noting that although the superchargesQ̃± and the new HamiltoniañH are the integrals of
motion, there is implicit time dependence in them. In the case of the stationary magnetic and
electric fields the obtained supercharges remain implicitly time dependent (see (31)). Only
in the case of the stationary magnetic field without the electric one there exist the super-
charges which do not contain time in implicit form. Note also that the obtained algebra can
be used for generating solutions of the nonstationary Pauli equation as is shown in section 5.
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